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Abstract. The aim of this article is to relate two different factorizations of
the zeta functions of Dwork hypersurfaces which were obtained in two previous
articles. The first factorization is explicit, given in terms of numerators of zeta
functions of hypersurfaces of hypergeometric type. The second comes from an
isotypic decomposition of the cohomology. To relate these two factorizations,
we use a technique based on L functions of representations, following a method
of Katz.

1. Introduction

Let Fq be a finite field of characteristic p having q elements and n a prime
number ≥ 5 such that q ≡ 1 mod n. In [8], Wan showed that the zeta function of
the projective hypersurface Xψ ⊂ Pn−1 defined by xn1 + · · ·+ xnn − nψx1 . . . xn = 0
(where ψ ∈ F∗q is a parameter satisfying ψn 6= 1 so that Xψ is non-singular) is

ZXψ/Fq (t) = (Q(t, ψ)R(qt, ψ))(−1)n−1

(1− t)(1− qt) . . . (1− qn−2t) ,

where Q is a polynomial of degree n− 1 with integer coefficients which comes from
mirror symmetry (more precisely, this factor appears in the zeta function of the
quotient Xψ/A where A is the group of roots of unity acting on Xψ and defined
below; see [8] for more details), and R is a polynomial of degree 1

n [(n − 1)n +
(−1)n(n − 1)] − (n − 1) with integer coefficients and with roots of absolute value
q−(n−4)/2.

In [3] and [4], we obtained two different factorizations of the polynomial R. The
aim of this article is to compare them. More precisely, define

A = {(ζ1, . . . , ζn) ∈ Fnq | ζni = 1, ζ1 . . . ζn = 1}/{(ζ, . . . , ζ)};
Â = {(a1, . . . , an) ∈ (Z/nZ)n | a1 + · · ·+ an = 0}/{(a, . . . , a)}.

The group A acts on Xψ by coordinate-wise multiplication. Fix a prime ` 6=
p; as q ≡ 1 mod n, µn(Fq) ' µn(Q`) (where µn(K) denotes the group of n-
th roots of unity of K) and denote by θ such an isomorphism. We identify Â
to the group of characters of A taking values in Q` thanks to the isomorphism
[a1, . . . , an] 7→ ([ζ1, . . . , ζn] 7→ θ(ζ1)a1 . . . θ(ζn)an). With this identification, we write
a([ζ]) = a1(ζ1) . . . an(ζn) where ai(ζi) = θ(ζi)ai . We also set Â∗ = Â \ {[0]}. Given
a ∈ Â, we introduce the following notations from [3, 4]:

• ma = |Z/nZ \ {a1, . . . , an}|; it’s (see [4, §3.3]) the multiplicity of the char-
acter a appearing in the Q`[A]-module Hn−2

et (Xψ,Q`);
• γa = number of permutations of (a1, . . . , an);
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• Sa = {σ ∈ Sn | ∃k ∈ (Z/nZ)×, σa = a}; because n is prime, if σ ∈ Sa and
a 6= [0], there exist a unique k ∈ (Z/nZ)× such that σa = ka; the reason
for the bar over the a is to use the same notation as in [3, §5.1];

• ka is the application Sa → (Z/nZ)×, σ 7→ k thus defined when a 6= [0].
In [3], we showed that the polynomial R can be factored as1

R(t) =
∏

a∈(Z/nZ)××Sn\Â∗
Ra(t)γa/|Im ka|,

where Ra are polynomials which appear (up to a multiplicative factor affecting their
variable) in the numerator of the zeta function of a hypersurface of hypergeometric
type of which we can give an explicit equation (see [3, §5.3 and §3.2]). As these
hypergeometric hypersurfaces are not smooth, the degree of the factors Ra are not
automatically known; as a consequence of the main result of this article, we will
obtain degRa (see Corollary 5.5).

In [4], we showed that the polynomial R can be factored as2

R(t) =
∏

a∈(Z/nZ)××Sn\Â∗
Qa(t)γa ,

where the polynomials Qa = Qa,1 have degree ma(n− 1)/|Im ka| and satisfy

Qa(t)γa = det(1− tFrob∗|Hn−2
et (Xψ,Q`)Wa),

where Wa = Wa,1 is an irreducible representation over Q of the automorphism
group A oSn of Xψ and Hn−2

et (Xψ,Q`)Wa is the isotypic component of type Wa

of the Q[AoSn]-module Hn−2
et (Xψ,Q`).

We now describe our method to relate these two factorizations. It is the same as
Katz used for Artin-Schreier curves in [6] (it is also used by Wan in [8, Lemma 7.2]
to show the existence of the polynomials Q and R). First, we compute, for a ∈ Â,
the following sums, which belong to Q`,

SXψ/Fq,a,r = 1
|A|

∑
[ζ]∈A

a([ζ]) |Fix(Frobr ◦ [ζ]−1)|.

(Here Frob denotes the Frobenius induced by x 7→ xq and Fix(f) denotes the set
of elements of Xψ fixed by the endomorphism f of Xψ.) Next, we consider the
corresponding L function

LX/Fq,a(t) = exp
(+∞∑
r=1

S(X/Fq, a, r)
tr

r

)
,

The computation of the sums SXψ/Fq,a,r (see Theorem 3.4) will allow to relate Ra(t)
and LX/Fq,a(t). Moreover, a trace formula and the fact that A acts trivially on the
spaces Hi

et(Xψ,Q`) for i 6= n− 2 (see §4) will show that, when a 6= [0],

LX/Fq,a(t) = det(1− tFrob∗|Hn−2
et (Xψ,Q`)a),

where Hn−2
et (Xψ,Q`)a is the isotypic component of type a of Hn−2

et (Xψ,Q`). This
will allow us to relate Qa to LX/Fq,a(t) and thus to Ra(t). The final result is that

Ra(t) = Qa(t)|Im ka|.

1With the notation of this article, we have |Im ka| = Ka when a 6= [0] and n is prime.
2Because n is prime, the formulas simplify greatly.
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The article is organized as follows. To compute the sums SXψ/Fq,a,r for the Dwork
hypersurfaces in §3, we first need to determine them for Fermat hypersurfaces (see
§2). After recalling the properties of L functions in §4, we establish the link between
Ra and Qa in §5. The results and notations from [3] and [4] are only used in §5.

2. Computation of the sums for Fermat hypersurfaces

Let us first note that, as SX/Fq,a,r = SX/Fqr ,a,1, we only need to deal with the
case r = 1, i.e. compute SX/Fq,a = SX/Fq,a,1. We will restrict ourself to this case in
all of this section.

Let d ≥ 1 be an integer such that q ≡ 1 mod d. We consider the hypersurface
D ⊂ Pn−1 defined by xd1 + . . .+ xdn = 0 and denote by D∗ the corresponding toric
hypersurface (i.e. with all coordinates non zero).

We adapt the notations of the introduction to Fermat hypersurfaces (when d = n,
they correspond to the case ψ = 0 of Dwork hypersurfaces) by setting

A = {(ζ1, . . . , ζn) ∈ Fnq | ζdi = 1, ζ1 . . . ζn = 1}/{(ζ, . . . , ζ)};
Â = {(a1, . . . , an) ∈ (Z/dZ)n | a1 + · · ·+ an = 0}/{(a, . . . , a)},

and identifying Â to the group of characters of A taking values in Q` thanks to a
fixed isomorphism between µd(Fq) and µd(Q`).

The map from Hom(µd(Fq),Q`) to {χ ∈ F̂∗q | χd = 1} which takes b to b̌ : x 7→
b(x(q−1)/d) is a group isomorphism; we denote its inverse by χ 7→ χ̂.

Finally, Frob denotes the endomorphism of D induced by x 7→ xq, and, if a ∈ Â,
we consider

SD/Fq,a = 1
|A|

∑
[ζ]∈A

a([ζ]) |FixD(Frob ◦ [ζ]−1)|;

SD∗/Fq,a = 1
|A|

∑
[ζ]∈A

a([ζ]) |FixD∗(Frob ◦ [ζ]−1)|.

The method we are going to use to compute SD/Fq,a and SD∗/Fq,a is an adaptation
of the one used by Katz for Artin-Schreier curves in [6]; it amounts to adapting the
classical formula for the number of points over Fq of D and D∗ (see for example
[1]).

2.1. Preliminary results. We begin with remarks which we will use constantly
in what follows.

Remark 2.1.
(1) If xq−1 = ξ with ξd = 1, then xd ∈ Fq. Indeed, (xd)q−1 = (xq−1)d = ξd = 1.
(2) If ξd = 1, then every y ∈ Fq satisfying y(q−1)/d = ξ belongs to Fq. Indeed,

yq−1 = (y(q−1)/d)d = ξd = 1.
(3) If ξd = 1, χd = 1 and y(q−1)/d = ξ, then χ(y) is independent of the choice

of y. Indeed, with the preceding notations, χ(y) = χ̂(y(q−1)/d) = χ̂(ξ).

Lemma 2.2. If ξ ∈ Fq satisfies ξd = 1, then, using the previous notations,

∀η ∈ F̂∗q ,
∑

xq−1=ξ

η(xd) =
{

(q − 1)η̂(ξ) if ηd = 1,
0 if ηd 6= 1.
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Proof. Let y ∈ Fq be such that y(q−1)/d = ξ. We extend η into a character η of F∗q
and choose ξ′ ∈ Fq such that ξ′d = y. By making the change of variable x = ξ′z,
we obtain ∑

xq−1=ξ

η(xd) = η(ξ′d)
∑

zq−1=1

ηd(z) = η(y)×
{
q − 1 if ηd = 1,
0 if ηd 6= 1,

with η(y) = η̂(ξ) by Remark 2.1.(3). �

2.2. Computation of the sums for Fermat hypersurfaces. Before computing
SD/Fq,a, we show a formula for the corresponding fixator.

Proposition 2.3. Let ϕ be a fixed non-trivial additive character of Fq. If [ζ] =
[ζ1, . . . , ζn] ∈ A, then, with the notations of the begining of §2,

|FixD(Frob ◦ [ζ]−1)| = 1 + q + · · ·+ qn−2

+ 1
q

∑
χdi=1, χi 6=1
χ1...χn=1

G(ϕ, χ−1
1 ) . . . G(ϕ, χ−1

n )χ̂1(ζ1) . . . χ̂n(ζn).

Proof. We first compute the affine fixator, then deduce the projective one thanks
to the formula

|Fixproj
D (Frob ◦ [ζ]−1)| = |Fixaff

D (Frob ◦ ζ−1)| − 1
q − 1 .

(Let us justify this quickly: if [xq1 : . . . :xqn] = [ζ1x1 : . . . : ζnxn] with one of the xi
non-zero, then (xq1, . . . , xqn) = λ(ζ1x1, . . . , ζnxn) where λ ∈ F∗q ; thus, for i such that
xi 6= 0, xqi = λζixi and so, if µ ∈ F∗q , we have (µxi)q = λζi(µxi) ⇐⇒ µq−1 = λ,
equation which has q − 1 solutions in Fq.)

Let f(x) = xd1 + · · ·+ xdn so that D is the hypersurface defined by f = 0. As we
have said, we take inspiration on the classical computation of |D(Fq)| as presented
in [1]. Consider (x1, . . . , xn) ∈ Fnq satisfying xqi = ζixi. This means that either
xi = 0 or xq−1

i = ζi, thus xdi ∈ Fq in all cases by Remark 2.1.(1); in particular,
f(x) ∈ Fq. Using an orthogonality formula, we deduce that

|Fixaff
D (Frob ◦ ζ−1)| = 1

q

∑
a∈Fq

∑
xq
i
=ζixi

ϕ(af(x)).

The first step, in order to make a Fourier inversion, is to obtain sums over non-zero
elements:

|Fixaff
D (Frob ◦ ζ−1)|

= qn−1 + 1
q

∑
a∈F∗q

∑
xq
i
=ζixi

ϕ(axd1) . . . ϕ(axdn)

= qn−1 + 1
q

∑
a∈F∗q

(
1 +

∑
xq−1

1 =ζ1

ϕ(axd1)
)
. . .

(
1 +

∑
xq−1
n =ζn

ϕ(axdn)
)
.
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As all the axdi are non-zero, we can use the Fourier inversion formula for the func-
tions ϕ|F∗q :

|Fixaff
D (Frob ◦ ζ−1)|

= qn−1 + 1
q

∑
a∈F∗q

(
1 + 1

q − 1
∑
η1∈F̂∗q

∑
xq−1

1 =ζ1

G(ϕ, η−1
1 )η1(axd1)

)

. . .

(
1 + 1

q − 1
∑
ηn∈F̂∗q

∑
xq−1
n =ζn

G(ϕ, η−1
n )ηn(axdn)

)
.

As G(ϕ,1) = −1, this is equal to

qn−1 + 1
q

1
(q − 1)n

∑
∀i, ηi 6=1

G(ϕ, η−1
1 ) . . . G(ϕ, η−1

n )
(∑
a∈F∗q

(η1 . . . ηn)(a)
)

×
( ∑
xq−1

1 =ζ1

η1(xd1)
)
. . .

( ∑
xq−1
n =ζn

ηn(xdn)
)
.

The sum over a is immediate to compute thanks to an orthogonality formula and
the sums over the xi can be computed thanks to Lemma 2.2:

∑
a∈F∗q

(η1 . . . ηn)(a) =
{
q − 1 if η1 . . . ηn = 1,
0 if η1 . . . ηn 6= 1;

∑
xq−1
i

=ζi

ηi(xdi ) =
{

(q − 1)η̂i(ζi) if ηdi = 1,
0 if ηdi 6= 1.

Therefore,

|Fixaff
D (Frob ◦ ζ−1)| = qn−1

+ (q − 1)
q

∑
χdi=1, χi 6=1
χ1...χn=1

G(ϕ, χ−1
1 ) . . . G(ϕ, χ−1

n )χ̂1(ζ1) . . . χ̂n(ζn).

Thus, in terms of projective fixator:

|Fixproj
D (Frob ◦ [ζ]−1)| = 1 + q + · · ·+ qn−2

+ 1
q

∑
χdi=1, χi 6=1
χ1...χn=1

G(ϕ, χ−1
1 ) . . . G(ϕ, χ−1

n )χ̂1(ζ1) . . . χ̂n(ζn). �

Before we give the next theorem, let us introduce a notation which we will often
in what follows.

Notations. δP ∈ {0, 1} is equal to 1 if and only if the property P is true; for
example, δa=[0] equals 1 if a = [0] and equals 0 if a 6= [0].
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Theorem 2.4. We continue to consider a fixed non-trivial additive character ϕ of
Fq and keep the notations of the beginning of §2. If a ∈ Â,

SD/Fq,a = (1 + q + · · ·+ qn−2)δa=[0]

+ 1
q

∑
χd=1, χ 6=ǎi

G(ϕ, χ−1ǎ1) . . . G(ϕ, χ−1ǎn).

Proof. By the definition of SD/Fq,a and Proposition 2.3, we need to compute

1
|A|

∑
[ζ]∈A

a([ζ])(1 + q + · · ·+ qn−2)

+ 1
q

∑
χdi=1, χi 6=1
χ1...χn=1

G(ϕ, χ−1
1 ) . . . G(ϕ, χ−1

n ) 1
|A|

∑
[ζ]∈A

a([ζ])χ̂1(ζ1) . . . χ̂n(ζn).

The value of the first sum results from an orthogonality formula:

1
|A|

∑
[ζ]∈A

a([ζ]) = δa=[0].

The value of the second sum also results from orthogonality formulas:

1
|A|

∑
[ζ]∈A

a([ζ])χ̂1(ζ1) . . . χ̂n(ζn) = 1
|A|

∑
[ζ]∈A

(a1χ̂1)(ζ1) . . . (anχ̂n)(ζn)

=
{

1 if a1χ̂1 = · · · = anχ̂n,
0 otherwise.

In the first case, we set χ̂ = a1χ̂1 = · · · = anχ̂n and have χ = ǎiχi for all i and so
χ−1
i = χ−1ǎi. We deduce the needed result as ǎiχ−1 6= 1 ⇐⇒ χ 6= ǎi. �

2.3. Computation of the sums for toric Fermat hypersurfaces. Just like for
SD/Fq,a, we start by computing the fixator.

Proposition 2.5. We continue to consider a fixed non-trivial additive character ϕ
of Fq and keep the notations of the beginning of §2. If [ζ] = [ζ1, . . . , ζn] ∈ A, then

|FixD∗(Frob ◦ [ζ]−1)| = (q − 1)n−1

q

+ 1
q

∑
χdi=1

χ1...χn=1

G(ϕ, χ−1
1 ) . . . G(ϕ, χ−1

n )χ̂1(ζ1) . . . χ̂n(ζn).

Proof. The method is the same as in the previous subsection. We compute first the
affine fixator and then deduce the projective one thanks to the formula

(2.1) |Fixproj
D∗ (Frob ◦ [ζ]−1)| = |Fixaff

D∗(Frob ◦ ζ−1)|
q − 1 .
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As in Proposition 2.3, ϕ(axdi ) makes sense when xqi = ζixi. We first obtain sums
over non-zero elements:

|Fixaff
D∗(Frob ◦ ζ−1)| = (q − 1)n

q

+ 1
q

∑
a∈F∗q

( ∑
xq−1

1 =ζ1

ϕ(axd1)
)
. . .

( ∑
xq−1
n =ζn

ϕ(axdn)
)
.

We now use a Fourier inversion:

|Fixaff
D∗(Frob ◦ ζ−1)| = (q − 1)n

q

+ (q − 1)
q

∑
χdi=1

χ1...χn=1

G(ϕ, χ−1
1 ) . . . G(ϕ, χ−1

n )χ̂1(ζ1) . . . χ̂n(ζn),

which gives the result after using (2.1). �

Theorem 2.6. We continue to consider a fixed non-trivial additive character ϕ of
Fq and keep the notations of the beginning of §2. If a ∈ Â,

SD∗/Fq,a = (q − 1)n−1

q
δa=[0] + 1

q

∑
χd=1

G(ϕ, χ−1ǎ1) . . . G(ϕ, χ−1ǎn).

Proof. The principle of the proof is the same as for Theorem 2.4. �

2.4. Computation of the sums for the complement of toric Fermat hy-
persurfaces. Let SD′/Fq,a = SD/Fq,a − SD∗/Fq,a (this is the sum corresponding to
the case where at least one of the xi is zero). We have the following result.
Theorem 2.7. Fix as before a non-trivial additive character ϕ of Fq and keep the
notations of the beginning of §2. If a ∈ Â,

SD′/Fq,a =
(

1 + q + · · ·+ qn−2 − (q−1)n−1

q

)
δa=[0]

− 1
q

∑
χd=1
∃i, χ=ǎi

G(ϕ, χ−1ǎ1) . . . G(ϕ, χ−1ǎn).

Proof. This is an immediate consequence of Theorem 2.4, Theorem 2.6 and of the
relation SD′/Fq,a = SD/Fq,a − SD∗/Fq,a. �

3. Computation of the sums for Dwork hypersurfaces

Just like for the Fermat hypersurfaces, we may, without any loss of generality,
restrict to the computation of SXψ/Fq,a = SXψ/Fq,a,1. Let us note that the com-
putations of all this section are valid when n is an integer ≥ 1 satisfying q ≡ 1
mod n.

We go back to the notations and assumptions of the introduction and use the
notations b 7→ b̌ and χ 7→ χ̂ from the beginning of §2 when d = n. We denote
by X∗ψ the (projective) toric hypersurface given by the same equation as Xψ and
define the corresponding sum for a ∈ Â

SX∗
ψ
/Fq,a = 1

|A|
∑

[ζ]∈A

a([ζ]) |FixX∗
ψ

(Frob ◦ [ζ]−1)|.
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(As before, Frob denotes the Frobenius endomorphism induced by x 7→ xq.) The
method to compute this sum is the same as for the Fermat hypersurface.

From the relation SXψ/Fq,a − SX∗ψ/Fq,a = SD/Fq,a − SD∗/Fq,a when d = n, we will
then decude the value of SXψ/Fq,a (this is the reason why we needed to compute
the sums for Fermat hypersurfaces).

As in §2, we start by a remark, and notice that Remark 2.1 and Lemma 2.2 both
stay valid when d = n.

Remark 3.1. Let (xi)1≤i≤n be a finite sequence of elements of Fq. If, for each
i ∈ [[1, n]], we can write xq−1

i = ζi with ζ1 . . . ζn = 1, then x1 . . . xn ∈ Fq. Indeed,
(x1 . . . xn)q−1 = ζ1 . . . ζn = 1.

3.1. Computation of the sums for toric Dwork hypersurfaces. The method
is the same as in §2.3 for the toric Fermat hypersurface.

Proposition 3.2. Fix as before a non-trivial additive character ϕ of Fq. If [ζ] =
[ζ1, . . . , ζn] ∈ A, then

|FixX∗
ψ

(Frob ◦ [ζ]−1)| = (q − 1)n−1

q
+
∑
χni =1

χ1...χn=1
mod (χ,...,χ)

Nχ1,...,χn,η(ψ) χ̂1(ζ1) . . . χ̂n(ζn),

where

Nχ1,...,χn,η(ψ) = 1
q − 1

∑
η∈F̂∗q

1
q
G(ϕ, χ−1

1 η−1) . . . G(ϕ, χ−1
n η−1)

·G(ϕ, ηn)η( 1
(−nψ)n ).

The following proof follows closely the corresponding computation of |Xψ(Fq)|
from [3, §4.2], but we repeat all the arguments in detail.

Proof. Set f(x) = xn1 + · · · + xnn − nψx1 . . . xn = 0 where ψ ∈ F∗q is a parameter.
The method is the same as for the Fermat hypersurface (in particular, we first
compute affinely and then projectively). Notice that, by Remark 2.1.(1), it makes
sense to consider ϕ(axni ) when xqi = ζixi; the same goes for ϕ(−nψax1 . . . xn) by
Remark 3.1. We write

|Fixaff
X∗
ψ

(Frob ◦ ζ−1)| = 1
q

∑
a∈Fq

∑
xi∈F

∗
q , xq

i
=ζixi

ϕ(af(x))

= (q − 1)n

q
+ 1
q

∑
a∈F∗q

∑
xq−1
i

=ζi

ϕ(axn1 ) . . . ϕ(axnn)ϕ(−nψax1 . . . xn).

We now use the Fourier inversion formula for ϕ|F∗q :

|Fixaff
X∗
ψ

(Frob ◦ ζ−1)| = (q − 1)n

q

+ 1
q

1
(q − 1)n+1

∑
a∈F∗q

η1,...,ηn+1∈F̂∗q
xq−1
i

=ζi

G(ϕ, η−1
1 ) . . . G(ϕ, η−1

n+1)η1(axn1 ) . . . ηn(axnn)
· ηn+1(−nψax1 . . . xn).
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We extend the characters ηi into characters ηi of F
∗
q . The previous sum can be

rewritten as

|Fixaff
X∗
ψ

(Frob ◦ ζ−1)| = (q − 1)n

q

+ 1
q

1
(q − 1)n+1

∑
η1,...,ηn+1

G(ϕ, η−1
1 ) . . . G(ϕ, η−1

n+1)
(∑
a∈F∗q

(η1 . . . ηn+1)(a)
)

×
( ∑
xq−1

1 =ζ1

(ηn1ηn+1)(x1)
)
. . .

( ∑
xq−1
n =ζn

(ηnnηn+1)(xn)
)
ηn+1(−nψ).

The sum over a is immediate to compute thanks to an orthogonality formula:

∑
a∈F∗q

(η1 . . . ηn+1)(a) =
{
q − 1 if η1 . . . ηn+1 = 1,
0 if η1 . . . ηn+1 6= 1,

and the sums over the xi can be computed thanks to a change of variable and an
orthogonality formula; more precisely, if ξq−1

i = ζi,

∑
xq−1
i

=ζi

(ηni ηn+1)(xi) =
{

(q − 1)(ηn1ηn+1)(ξi) si ηni ηn+1 = 1,
0 si ηni ηn+1 6= 1.

This shows that, in the original sum, we may take away all the terms corre-
sponding to characters ηi which do not satisfy η1 . . . ηn+1 = 1 and ηni ηn+1 = 1. We
consider η such that ηn = η−1

n+1, and obtain{
ηni ηn+1 = 1
η1 . . . ηn+1 = 1

⇐⇒

{
ηi = χiη

χ1 . . . χn = 1
where χi satisfies χni = 1.

(We also choose the extensions of the characters in a way which is compatible with
this system of equations.) The character η is not unique; indeed, if η′ and χ′i are
also solution of the system, there exists χ satisfying χn = 1 such that η′ = χ−1η
and χ′i = χχi for all i. This means that if R is a system of representatives of the
n-uples (χ1, . . . , χn) of characters satisfying both χni = 1 and χ1 . . . χn = 1 mod
the (χ, . . . , χ) with χn = 1, then the map (χ1, . . . , χn, η) 7→ (χ1η, . . . , χnη, η

−n)
is a bijection of R × F̂∗q onto the set of (n + 1)-uples (η1, . . . , ηn+1) satisfying the
previous system. Hence, the sum we began with can be written as

|Fixaff
X∗
ψ

(Frob ◦ ζ−1)| = (q − 1)n

q

+ 1
q

1
(q − 1)n

∑
χni =1

χ1...χn=1
mod (χ,...,χ)

∑
η∈F̂∗q

∑
xq−1
i

=ζi

G(ϕ, (χ1η)−1) . . . G(ϕ, (χnη)−1)
·G(ϕ, ηn)χ1(xn1 ) . . . χn(xnn)

· η( 1
(−nψ)n ).
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(We have used the fact that χni (xi) = χi(xni ).) Finally, by Lemma 2.2,

|Fixaff
X∗
ψ

(Frob ◦ ζ−1)| = (q − 1)n

q

+ 1
q

∑
χni =1

χ1...χn=1
mod (χ,...,χ)

∑
η∈F̂∗q

G(ϕ, χ−1
1 η−1) . . . G(ϕ, χ−1

n η−1)G(ϕ, ηn)
· η( 1

(−nψ)n )χ̂1(ζ1) . . . χ̂n(ζn).

By counting in the projective space (which amounts to a division by q− 1), we get
the announced result. �

Theorem 3.3. Fix as before a non-trivial additive character ϕ of Fq. If a ∈ Â,

SX∗
ψ
/Fq,a = (q − 1)n−1

q
δa=[0] + 1

q − 1
∑
η

1
q
G(ϕ, ǎ1η

−1) . . . G(ϕ, ǎnη−1)
·G(ϕ, ηn)η( 1

(−nψ)n ).

Proof. The principle is the same as for the Fermat hypersurfaces (Theorem 2.6),
namely the use of orthogonality formulas. Let us give a few details on the computa-
tion. The sum over the χi satisfying χni = 1 and χ1 . . . χn = 1 mod the (χ, . . . , χ) is
equal to 1

n times the sum over the χi satisfying χni = 1 and χ1 . . . χn = 1. Applying
orthogonality formulas, we get

1
n

∑
χd=1

∑
η∈F̂∗q

G(ϕ, ǎ1χ
−1η−1) . . . G(ϕ, ǎnχ−1η−1)G(ϕ, ηn)χ( 1

(−nψ)n ).

The change of variable χη → η gives the announced formula. �

3.2. Computation of the sums for Dwork hypersurfaces. We are now able
to compute SXψ/Fq,a.

Theorem 3.4. Fix as before a non-trivial additive character ϕ of Fq. If a ∈ Â,

SXψ/Fq,a = (1 + q + · · ·+ qn−2)δa=[0]

+ 1
q − 1

∑
η

1
qδ∀i, η 6=ǎi

G(ϕ, ǎ1η
−1) . . . G(ϕ, ǎnη−1)G(ϕ, ηn)η( 1

(−nψ)n ).

Proof. Set SX′
ψ
/Fq,a = SXψ/Fq,a − SX∗

ψ
/Fq,a. We have SX′

ψ
/Fq,a = SD′/Fq,a (with

d = n) because x1 . . . xn = 0 when at least one of the xi is zero. Hence,
SXψ/Fq,a = SX∗

ψ
/Fq,a + SD′/Fq,a,

where SX∗
ψ
/Fq,a is given by Theorem 3.3 and SD′/Fq,a by Theorem 2.7. We can write

(notice that, when ηn = 1, G(ϕ, ηn) = G(ϕ,1) = −1 and η( 1
(−nψ)n ) = 1):

SX′
ψ
/Fq,a =

(
1 + q + · · ·+ qn−2 − (q − 1)n−1

q

)
δa=[0]

+ 1
q − 1

∑
ηn=1
∃i, η=ǎi

q − 1
q

( n∏
i=1

G(ϕ, χ−1ǎi)
)
G(ϕ, ηn)η( 1

(−nψ)n ).

This expression can be included into SX∗
ψ
/Fq,a in a natural way and this gives the

announced result. �
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4. L function of the sums

Definition 4.1. Let X be a (smooth) variety over Fq, G a finite group of automor-
phisms acting algebraically on X and ρ a representation of G irreducible over Q`.
We set

SX/Fq,ρ,r = 1
|G|

∑
g∈G

tr ρ(g) |Fix(Frobr ◦ g−1)|

and build the associated L function

LX/Fq,ρ(t) = exp
(+∞∑
r=1

SX/Fq,ρ,r
tr

r

)
.

Theorem 4.2. If X is a projective scheme over Fq which is smooth and of dimen-
sion m, then

2m∑
i=0

(−1)i tr((Frobr ◦ g−1)∗|Hi
et(X,Q`)) = |Fix(Frobr ◦ g−1)|.

Proof. See [2, §3 p. 119], which in turn refers to [5, 7]. �

Proposition 4.3. We keep the preceding notations. Denote by Hi
et(X,Q`)ρ the

isotypic component of type ρ of Hi
et(X,Q`) and set Pi,ρ(t) = det(1 − tFrob∗|

Hi
et(X,Q`)ρ). We have

LX/Fq,ρ(t)
dim ρ =

2m∏
i=0

Pi,ρ(t)(−1)i+1
.

Proof. This theorem comes from [6, p. 170–172]; in order to prove it, we just replace
the cardinal of the fixator by its value in terms of an alternated sum in the definition
of the L function:

LX/Fq,ρ(t)
dim ρ

= exp
( 2m∑
i=0

(−1)i
+∞∑
r=1

dim ρ

|G|
∑
g∈G

tr ρ(g) tr
(
(Frobr ◦ g−1)∗

∣∣Hi
et(X,Q`)

) tr
r

)

=
2m∏
i=0

exp
(+∞∑
r=1

tr
(

dim ρ

|G|
∑
g∈G

tr ρ(g)(g∗)−1 ◦ (Frob∗)r
∣∣∣∣Hi

et(X,Q`)
)
tr

r

)(−1)i

=
2m∏
i=0

exp
(+∞∑
r=1

tr
(
π ◦ (Frob∗)r

∣∣Hi
et(X,Q`)

) tr
r

)(−1)i

=
2m∏
i=0

exp
(+∞∑
r=1

tr
(
(Frob∗)r

∣∣Hi
et(X,Q`)ρ

) tr
r

)(−1)i

=
2m∏
i=0

(
1

Pi,ρ(t)

)(−1)i

,

where the linear map π = dim ρ
|G|

∑
g∈G[tr ρ(g)](g∗)−1 projects Hi

et(X,Q`) on the
isotypic component Hi

et(X,Q`)ρ. �
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Remark 4.4. The decomposition of each Hi
et(X,Q`) into isotypic components

gives the following decomposition:

ZX/Fq (t) =
∏

ρ irred./Q`

LX/Fq,ρ(t)
dim ρ

.

For the rest of this section, we go back to the situation of the introduction:
X = Xψ (dimension m = n − 2) and G = A. As this group is abelian, we have
dim ρ = 1 for all irreducible representation over Q`, so the formula of the previous
remark is valid without any powers.
Proposition 4.5. Recall from the introduction that n ≥ 5 is assumed prime and
that q ≡ 1 mod n. Consider i ∈ [[0, n − 3]] and a ∈ Â. The polynomial Pi,a
corresponding to Xψ is equal to 1 except when a = [0] and i is even, in which case
Pi,[0] = 1− qi/2t.
Proof. Consider i ∈ [[0, n − 3]] and first assume that i is odd. Because Xψ is a
non-singular projective hypersurface, we have Hi

et(Xψ,Q`) = {0} and so Pi,a = 1.
Assume now that i is even. The spaces Hi

et(Xψ,Q`) have dimension 1 and
the group A acts trivially on each of them (because the elements of A extend to
automorphisms of Pn−1; this comes from the fact that PGLn(Fq) does not admit
non-trivial representations of degree 1, see [4, Lemma 2.4]) and thus Pi,a = 1 if
a 6= [0]. From

∏
a Pi,a = det(1 − tFrob∗|Hn−2

et (Xψ,Q`)) = 1 − qi/2t (Leftschetz
polynomials), we deduce that Pi,[0] = 1− qi/2t. �

Using Proposition 4.3, we deduce the following.
Corollary 4.6. If a 6= [0],

LXψ/Fq,a(t) = Pn−2,a(t) = det(1− tFrob∗|Hn−2
et (Xψ,Q`)a).

In particular, LXψ/Fq,a(t) is a polynomial.

Remark 4.7. When a = [0], the behaviour is different: the L function LXψ/Fq,[0](t)
is the zeta function of the mirror variety of Xψ, see [8, Lemma 7.2, p. 174] and is
thus a rational function which is not a polynomial.

5. Comparison of the two factorizations

Notations. We begin by introducing the following notations for a ∈ Â:
• 〈a〉 the class of a ∈ A mod Sn;
• a the class of a ∈ A mod (Z/nZ)×;
• a the class of a ∈ A mod the simultaneous actions of Sn and (Z/nZ)×.

Remark 5.1. Note that ma and γa from the introduction only depend on a and
that ka and Sa only depend on a.
5.1. Relation between L functions and the explicit factorization. Before
defining what Ra is, let us recall a few results from [3].

As before, n denotes a prime number ≥ 5 satisfying q ≡ 1 mod n. If a ∈ Â and
χ is a fixed character of order n of F∗q , set

Na = |Im ka|
∑
〈a′〉∈a

1
q − 1

∑
η∈F̂∗q

( n∏
i=1

q−δ∀i, χ
−ai 6=ηG(ϕ, χ−aiη−1)

)
·G(ϕ, ηn)η( 1

(−nψ)n ).
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(Compare this formula with Theorem 3.4 when ǎi = χ−ai .) With this notation, we
have [3, §4.2]

|Xψ(Fq)| = 1 + q + · · ·+ qn−2 +
∑
a

γa
|Im ka|

Na,

where N(0,1,2,...,n−1) = 0 because ψn 6= 1 (see [3, §4.4]). Moreover, by [3, §5.3
and §4.2], there exists an affine hypersurface Ha of hypergeometric type and odd
dimension ≤ n− 4 such that

Na = q
n−2−dimHa

2 (|Ha(Fq)| − qdimHa).

The hypergeometric hypersurfaces Ha have explicit equations of the form

yn = xα1
1 . . . xαdd (1− x1)β1 . . . (1− xk − 1)βk−1

· (1− xk − · · · − xd)βk(1− 1
ψnx1 . . . xk)γ ,

where the integers αi, βi and γ depend on a.

Definition 5.2. Ra(t) = exp
(+∞∑
r=1

Na(t) t
r

r

)
.

Theorem 5.3. Assume that a 6= [0]. Using the notations from §4, we have

Na = |Im ka|
∑
〈a′〉∈a

SXψ/Fq,a′ , hence Ra(t) =
( ∏
〈a′〉∈a

LXψ/Fq,a′(t)
)|Im ka|

.

In particular, Ra is a polynomial.

Proof. This is just a reformulation of Theorem 3.4 using the notations we have just
introduced. �

5.2. Relation between L functions and the cohomological factorization.
We use the notations of the introduction concerning Qa and Wa.

Theorem 5.4. Assume that a 6= [0, . . . , 0]. We have

Qa =
∏
〈a′〉∈a

LXψ/Fq,a′(t).

Proof. Denote byHa the isotypic component of type a of theQ`[A]-moduleHn−2
et (Xψ,Q`)

andHWa the isotypic component of typeWa of theQ[AoSn]-moduleHn−2
et (Xψ,Q`).

By Theorem 5.16 of [4], we have

Wa ⊗Q Q` '
⊕
a′∈a

a′ hence HWa
⊗Q` Q` '

⊕
a′∈a

Ha′ .

(The first isomorphism is an isomorphism of Q`[A]-modules whereas the second
one is an isomorphism of Q`[A o Sn]-modules; indeed, each Ha′ is only a Q`[A]-
module but their sum becomes a Q`[AoSn]-module.) Therefore, as LXψ/Fq,a(t) =
det(1− tFrob∗|Ha) (Corollary 4.6) and Qa(t)γa = det(1− tFrob∗|HWa

) = det(1−
tFrob∗ ⊗ Id|HWa ⊗Q` Q`),

Qa(t)γa =
∏
a′∈a

LXψ/Fq,a′(t) =
( ∏
〈a′〉∈a

LXψ/Fq,a′(t)
)γa

.
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(We have used the fact that SXψ/Fq,a′ = SXψ/Fq,a if a′ is a permutation of a.)
Because Qa(t) and

∏
〈a′〉∈a LXψ/Fq,a′(t) both belong to 1 + tQ[t], we deduce the

equality without the power γa. �

Corollary 5.5. We have

Ra(t) = Qa(t)|Im ka| and so degRa = (n− 1)ma.

Remark 5.6. Before we continue, let us make a few remarks and recall some results
from [4].

(1) As n is prime, an element a ∈ Â which is 6= [0] has order n in the group Â.
Considered as a character, a thus takes its values in a cyclotomic field Ka
of degree n− 1 over Q, which we will consider as a subfield of Q`, following
the identifications made in the introduction (see [4, §5.2] for an intrinsic
construction of this field). With this convention, SXψ,a,r ∈ Ka and thus
LXψ,a(t) ∈ Ka[t].

(2) Denote by Da the subfield of Ka fixed by the automorphisms, indexed by
v ∈ Im ka, which send an n-th root of unity onto its v-th power. This
(commutative) field is (isomorphic to) the endomorphism ring of Wa (see
[4, Theorem 5.14]). As v·a is a permutation of a if v ∈ Im ka, we deduce that
SXψ,va,r = SXψ,a,r for all v ∈ Im ka, hence, SXψ,a,r ∈ Da and LXψ,a(t) ∈
Da[t].

(3) If 〈a′〉 ∈ a and v ∈ (Z/nZ)×, the formula

SXψ/Fq,va,r = 1
|A|

∑
[ζ]∈A

a([ζ])v |Fix(Frobr ◦ [ζ]−1)|

shows that the sums SXψ,a,r are conjugates and hence the polynomials
LXψ,a(t) are also conjugates. This shows that

Qa = NKa/Da(LXψ/Fq,a(t)).

(4) Recall from [4, Proposition 6.6] that Qa = NKa/Da(Pa) with Pa = Pa,1
the characteristic polynomial of the Frobenius acting by v 7→ Frob∗ ◦ v on
the Da ⊗Q Q`-module Va = Va,1 = HomQ[AoSn](Wa, H

n−2
et (Xψ,Q`)), and

that HWa
' Wa ⊗Da Va (see [4, §6.1]). The two polynomials Pa(t) and

LXψ/Fq,a(t) both belong to Da[t] and have the same degree. They are in
fact equal, as the next proposition shows.

Proposition 5.7. With the notations of Remark 5.6, there exists a suitable em-
bedding of EndQ[AoSn](Wa) onto Da ⊂ Q` such that

Pa = LXψ/Fq,a(t) .

Proof. Denote by FrobWa
the Frobenius acting on HWa

= Hn−2
et (Xψ,Q`)Wa and

considered as aDa-linear map, FrobWa
the Frobenius acting onHWa

⊗Q`Q` and con-
sidered as a Q`-linear map and Froba the Frobenius acting onHa = Hn−2

et (Xψ,Q`)a
and considered as a Q`-linear map. We are going to show that there exists an em-
bedding β of EndQ[AoSn](Wa) into Q` such that, if (δi,j)1≤i,j≤ma is the matrix of
FrobWa

, then (β(δi,j))1≤i,j≤ma is that of Froba, which will show the announced
result.

We build the embedding β as follows. Let δa be a primitive element of the
extension EndQ[AoSn](Wa)/Q; after extension of the scalars to Q`, the map δa ⊗
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Id becomes diagonal in every basis adapted to the decomposition Wa ⊗Q` Q` =⊕
a′∈a a

′; we denote by λa′ the eigenvalue corresponding to a′ and consider β the
embedding of EndQ[AoSn](Wa) into Q` given by β(δa) = λa.

The matrix of FrobWa in the previous basis is (δi,j ⊗ Id)1≤i,j≤ma ; we write
δi,j =

∑r−1
k=0 αi,j,kδ

k
a with r = dimQDa and αi,j,k ∈ Q and consider again the

decomposition Wa ⊗Q` Q` =
⊕

a′∈a a
′. The Q`-linear map δi,j ⊗ Id induced on the

factor which is isomorphic to a′ acts by multiplication by
∑r−1
k=0 αi,j,kλ

k
a′ , expression

which is equal to β(δi,j) when a′ = a. The matrix of Froba is thus (β(δi,j))1≤i,j≤ma ,
which ends the proof. �

References
[1] J. Delsarte, Nombre de solutions des équations polynomiales sur un corps fini. Séminaire

Bourbaki 3 (1950-1951), exposé no39.
[2] P. Deligne and G. Lusztig, Representations of Reductive Groups Over Finite Fields. Ann.

of Math. 103 (197!6), 103–161.
[3] P. Goutet, An Explicit Factorisation of the Zeta Functions of Dwork Hypersurfaces. Acta

Arithmetica 144 (2010), 241–261.
[4] P. Goutet, Isotypic Decomposition of the Cohomology and Factorization of the Zeta Func-

tions of Dwork Hypersurfaces. Finite Fields and Applications 17 (2011), 113–147.
[5] A. Grothendieck, Formule de Lefschetz et rationalité des fonctions L. Séminaire Bourbaki

9 (1964-1965), exposé no279.
[6] N. M. Katz, Crystalline Cohomology, Dieudonné Modules, and Jacobi Sums. In: Automorphic

forms, representation theory and arithmetic (Papers presented at the Bombay Colloquium,
1979), Springer, 1981, 165–246.

[7] A. Grothendieck, C. Houzel, L. Illusie et J.-P. Jouanolou, Cohomologie `-adique et
fonction L. Séminaire de Géometrie Algébrique du Bois Marie (SGA5, 1965-1966), Lecture
notes in mathematics 589, Springer, 1977.

[8] D. Wan, Mirror Symmetry For Zeta Functions. In: Mirror symmetry V (BIRS, December
6-11, 2003), International Press, 2006, 159–184; with an appendix by C. D. Haessig.

Philippe Goutet, Université Paris 6, Institut de Mathématiques de Jussieu, 4, place
Jussieu, 75005 Paris, France

E-mail address: goutet@math.jussieu.fr
URL: http://www.math.jussieu.fr/~goutet/


	1. Introduction
	2. Computation of the sums for Fermat hypersurfaces
	2.1. Preliminary results
	2.2. Computation of the sums for Fermat hypersurfaces
	2.3. Computation of the sums for toric Fermat hypersurfaces
	2.4. Computation of the sums for the complement of toric Fermat hypersurfaces

	3. Computation of the sums for Dwork hypersurfaces
	3.1. Computation of the sums for toric Dwork hypersurfaces
	3.2. Computation of the sums for Dwork hypersurfaces

	4. L function of the sums
	5. Comparison of the two factorizations
	5.1. Relation between L functions and the explicit factorization
	5.2. Relation between L functions and the cohomological factorization

	References

